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Abstract:  Navy sonar has recently been associated with a number 
of marine mammal stranding events1.  Beaked whales have been 
the predominant species involved in a number of these strandings.  
Monitoring and mitigating the effects of anthropogenic noise on 
marine mammals are active areas of research.  Key to both 
monitoring and mitigation is the ability to automatically detect 
and classify the animals, especially beaked whales.  This paper 
presents a novel support vector machine based methodology for 
automated species level classification of small odontocetes.  To 
date, the algorithm presented has been trained to differentiate 
the click vocalizations of Blainville's beaked whales (Mesoplodon 
densirostris) from the clicks produced by delphinids and from 
man-made sounds.  The automated classification capability 
compliments the detection and tracking tools already developed 
through ONR funding for the monitoring and localization of 
whales at the Atlantic Undersea Test and Evaluation Center, 
Andros Island, Bahamas.   
 

I.  INTRODUCTION 
 

Until very recently, little was know about beaked whale 
vocalizations. However, starting with the definitive recording 
of beaked whale clicks by Tyack, Johnson, et al. (using non-
invasive DTAG's) [1, 2] and continuing with the visually 
verified recording of beaked whales and other small 
odontocete vocalizations at AUTEC [3] there is now sufficient 
labeled data to develop automated classification algorithms.  
This paper investigates the application of a novel class-
specific support vector machine to the classification of 
vocalizations from beaked whales and small odontocetes.  

At a basic level, a classification system is one that assigns 
the current input x membership in to one of k known classes 
according to some set of decision metrics or functions.  In 
general, x is a multivariate random variable such that x ~ P(x).  
For example, popular maximum likelihood classifiers [4], 
assign an input data vector x membership in one of k possible 
class hypotheses {H1, ... Hj ...Hk } according to the 
probabilistic rule j* = arg max(p(Hj|x)).  This is equivalently 
written as j* = arg max(p(x|Hj)p(Hj)) after applying Bayes rule.  
Theoretically,  a maximum likelihood (ML) classifier is 
optimal in that it offers the lowest probability of error of any 
classifier [4].  However, in practice, it can be difficult to attain 
this optimal performance because the multidimensional 
probability density functions p(x|Hj) are unknown and must be 
estimated from training data. The amount of training data 
required to accurately estimate p(x|Hj) grows exponentially 
                                                        
1 Letter from the National Resource Defense Council, Oceans Futures Society, 
International Fund for Animal Welfare and the Humane Society of the United 
States to Hon. Gordon R. England, Secretary of the Navy, 14 July 2002. 

with the dimension of x.  This is problematic because the 
collection of labeled training data is usually difficult, time 
consuming and expensive. 

Statistical learning theory [5,6] represents a different 
paradigm for learning than the classical ML methods 
presented above.  Statistical learning theory advocates solving 
specific problems directly vice solving more general problems 
as an intermediate step [5].  That is, if there are limited data 
available to train a classifier then the best course of action is to 
estimate a decision boundary directly from the data.  This is in 
contrast to classical ML inference where the data are used to 
estimate parameters of density functions and then the PDFs 
are used to form decision boundaries.   
 

II. DISCUSSION 
 

One of the corner stones of statistical learning theory is the 
principle of structured risk minimization (SRM). Using the 
SRM principle, Vapnik developed a bound on the risk of 
classification error for a given decision function f given the 
empirical risk (training error) Remp(f) associated with the 
function, the training set size m, and the capacity h of the 
hypothesis space in which the decision function resides [6].  
This bound (1) is often referred to as the guaranteed risk, and 
is independent of the underlying distribution of the data.  
According to the SRM principle, the smallest bound on 
classification error is achieved by minimizing training error 
while using the function hypothesis space of the smallest 
capacity [5,6].  
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Support vector methods (or support vector machines, SVM) 

are a rich family of learning algorithms based on statistical 
learning theory.  SVM's were originally developed to solve 
binary classification problems of the following type:  Given a 
set of empirical data {(x1, y1) ... (xi, yi) ... (xm, ym)} where each 
(multidimensional) input example xi drawn from X is 
associated with classification label yi = ±1, determine the 
decision function that maps any new x drawn from X to y = ±1 
that  minimizes  risk of misclassification [5].  In short, SVMs 
implement the SRM principle. 
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Figure 1:  A notional view of a SVM [6].  a) Training data drawn from x 

shows two classes. b) Transformation T(x) maps the training data to a higher 
dimensional space where the optimal separating hyperplane is found.  The 

hyperplane in the higher dimensional space corresponds to a nonlinear 
decision boundary in the input space. 

 
SVM's use the existence of a unique optimal hyperplane 

which separates the two classes in some feature space (fig. 1).  
The SVM that implements the optimal hyperplane while 
maximizing the separation (margin) between the two classes 
will have the lowest risk of test error [5].  This optimal 
separating hyperplane is realized as 
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where G is a kernel mapping and b is an offset.  The weights 
α

i  for a “soft” margin SVM classifier [6] are found through  
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The constant C controls the degree of “slack” in the threshold 
optimization.  Large C corresponds to more rigid separation of 
the classes and less tolerance for class overlap in the training 
data.  Smaller C allows for more class overlap in the training 
data [7].  The optimization problem (3) is commonly solved 
using quadradic programming techniques [6, 8]. 

While SVM's were originally formulated for binary 
classification, many real world problems involve more than 
two classes.  As a result, a number of methods have been 
developed for applying SVM's to multi-class problems.  These 
methods tend to follow one of three basic approaches. The 
first approach is to form k binary "one-against-the-rest" 
classifiers (where k is the number of class labels) and choose 
the class whose decision function is maximized [5].  The 
second approach is to form all k(k-1)/2 pairwise binary 
classifiers and choose the class whose pairwise decision 
functions are maximized [9].  The third approach is to 
reformulate the objective function of the SVM for the multi-
class case such that the decision boundaries for all classes are 
optimized jointly [10, 11].  

In this paper we present a new type of multi-class support 
vector classifier called the class-specific SVM (CS-SVM).  
The new classifier consists of k binary SVM's where each 
SVM discriminates between one of k classes of interest and a 

common reference class.  The class whose decision function is 
maximized with respects to the reference class is selected.  
The CS-SVM extends the concept of exploiting class-specific 
features as proposed by other researchers for maximum 
likelihood classifiers [4,12] and neural networks [13] to the 
multi-class SVM problem.  

Many applications involve the classification of signals 
which are set in additive noise.  In that case, the problem is not 
to differentiate between two or more of k signals but to 
differentiate between one of k signals and noise.  The input 
vectors for such problems are actually of the form xu= su + n, 
for u = 1,2, ... k.  Currently, SVM's are designed assuming the 
classification problem is distinguishing xu= su from xv=sv   
Any noise in x is assumed to be accommodated by allowing 
"slack variables" in the hyperplane optimization [6].   

The CS-SVM expressly acknowledges the presence of the 
noise by treating it as a reference class.  For a single class, the 
classification problem reduces to a decision as to whether 
signal s is present or not. That is, y = sgn(f(x)) = +1 when 
x=s+n and y = sgn(f(x)) = -1 when x=n.  In the multi-class 
case, x is assigned membership in the class whose decision 
function fu(x) against its reference is maximum. Note that in 
acknowledging the presence of a reference class no 
assumptions are made about that class.  While it is intuitive to 
think of the reference class as Gaussian noise, say, the 
reference class could be of any arbitrary distribution.   

Below is an notional illustration of the CS-SVM concept 
for two dimensional data.  Optimal separating hyperplanes for 
each class versus the noise-only reference class are found.  
Since the optimal hyperplane separating any two classes is 
unique [5], the optimal hyperplane for class i vs n will be 
different from the optimal hyperplane for class j vs n.  
However, both hyperplanes are optimized against a common 
reference class.  The decision function f(x) for either signal-
present class should reject the noise only case.  Further, it is 
argued that fi(x) will be greater than fj(x) whenever x is 
associated with class i since fi(x) is optimal for class i and fj(x) 
is not. 

 
Figure 2:  A geometric view of the optimal separating hyperplanes for two 

SVMs for class i and class j, respectively, in a 2-D decision space. 
 

T(x)  



III. EXPERIMENTAL RESULTS – SYNTHETIC DATA 
 

To investigate the CS-SVM concept, several example cases 
using synthetic data were run.   Figure 3 shows the training 
data and test data for two of the 2-D example cases tested.  For 
these cases, a Gaussian radial basis function kernel was used 

such that ∑
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the set of support vectors for which αi > 0. Training sets were 
produced separately for each signal-present class using 
Gaussian noise as the reference class such that   
 
CS-SMV1:  T1 = {(x1,y)} = {(s1+  n, 1), (n, -1)}   and   
CS-SVM2:  T2 = {(x2,y)} = {(s2 +  n , 1), (n, -1)}   
 
where x , s, and n  were all 2-D vectors.  Fifty samples of each 
case were generated in both training sets.  Additionally, a 
training set suitable for a traditional binary SVM (B-SVM) 
was also generated again with fifty positive samples and fifty 
negative samples.  
 
   B-SVM:  T3 = {(x3 ,y )} = {(s1  +  n, 1 ), (s2   +  n, -1)}   
 
Each decision function fj(x) was then evaluated for test data 
consisting of 10000 samples from Class 1, 10000 samples 
from Class 2 and 10000 noise-only samples.  The performance 
of the SVMs were evaluated using the following metrics. The 
results for the example cases are listed in Table 1. 
 

 
(a)   

 
Figure 3: Training data (above) and test data (below) for 2 overlapped signal 

classes and noise-only reference. a) Case 1 and b) Case 3 

 
Pcc(j) = # test samples from class j where fj (x) > fl(x)    for all j≠l 
       Total # of test samples from class j  
 
Pmiss(j)= # test samples from class j where fl(x) >fj(x)   where l≠j 
        Total # of test samples from class j  
 
Pnse (j) = # of noise-only test samples incorrectly classified as class j 
                   Total # of noise-only test samples 
 

Overall, the CS-SVMs performed well.  In Case 3 where 
the classes were (nearly) separable, the classification 
performance of the CS-SVM and B-SVM for the signal-
present test data were comparable.  However, the B-SVM, 
having knowledge of the noise-only condition, misclassified 
all of the noise-only test data as either class 1 or class 2.  In 
Case 1 where the classes were significantly overlapped, the 
performance of the CS-SVM was again very good but support 
vector optimization (3) for the B-SVM failed. The resulting f(x) 
had no ability to separate the classes at all.  Several values of 
the soft margin parameter C were tried without success. 

Next, to explore the performance of the CS-SVM concept 
in a true multi-class setting, a synthetic 6 class case was 
considered.  Training data and test data for the six class case 
are shown in figure 4.  One SVM was constructed for each 
signal class versus noise-only using the training sets   
 
CS-SVM u:  Tu = {(xu,y)} = {(su + n, 1), (n, -1)}  for 1< u < 6.  
  
 

 
(b) 

 
 



Fifty positive and fifty negative examples were generated per 
class.  A Gaussian radial basis function kernel was again used 
as G in (2) and (3). The performance of the CS-SVM for the 6 
signal case is listed in Table 2. 
 

TABLE 1:  Performance of CS-SVM and binary SVM classifiers  
Test Case Classifier Pcc Pmiss Pnse 

CS-SVM1 0.9957 0.0043 0.0000 

CS-SVM2 0.9958 0.0042 0.0000 

Case 1 

Overlapped 

B-SVM SV Opt. Failed 

CS-SVM1 1.0000 0.0000 0.0000 

CS-SVM2 0.9938 0.0062 0.0000 

Case 3 

Separated 

B-SVM 0.9988 0.0012 1.0 (N/A) 

 
 

 

 
Figure 4:  Training data (above) and test data (below) for six overlapped 2-D 

signal plus noise classes and the noise-only reference. 
 

IV. CLASSIFICATION OF ODONTOCETE CLICKS 
 

In the past several years there has been much interest and 
progress in acoustic monitoring, localization and tracking of 
marine mammals [14,15]. Acoustic monitoring has a number 
of   benefits over  visual  monitoring.  Chief  among  them  are  

TABLE 2: CS-SVM performance for the 6-class example case 
Class Pcc Pmiss Pnse 

1  0.9316 0.0684 0.0000 

2 0.9268 0.0732 0.0000 

3 0.9530  0.0470 0.0000 

4 0.9142 0.0858 0.0000 

5 0.6829 0.3171 0.0000 

6 0.9878 0.0069  0.0053  

Noise -- 0.0017 0.9983 

 
increased area of coverage and the ability to operate over 
wider weather conditions and at night.  A major drawback of 
acoustic monitoring is associating species information with the 
received vocalizations.  However, recent field tests combining 
visual verification and digital recording tags with acoustic 
monitoring and localization have resulted in sets of “labeled” 
acoustic data [3].  These data are suitable for developing, 
training and testing classification algorithms. 

Many toothed whale and dolphin species produce 
broadband click vocalizations.  For species like pilot whales or 
dolphins, these clicks are just part of the animals' vocal 
repertoires which also include tonal whistles and sweeps. 
However, for other species like sperm whales and beaked 
whales, clicks are the primary sound they make.  Given their 
involvement in multiple stranding events linked to mid-
frequency sonar, the automated acoustic identification of 
beaked whales is of particular interest.  Luckily for algorithm 
designers, beaked whale clicks appear to be quite distinctive. 

Figure 5 shows the overlay of  several clicks from 
Blainville's beaked whales (Mesoplodon densirostris) 
recorded during a September 2004 marine mammal tracking 
test at AUTEC [14].  As noted in [2], the clicks are actually 
FM sweeps.  The level of similarity among the extracted clicks 
is striking.  It should be noted that while these clicks all have 
similar peak amplitudes, they are not adjacent in time. They 
were selected across a 15 minute data segment.  In fact, as 
beaked whales are often observed in groups of 3 or 4, there 
may even be calls from more than one animal present. 

The first step in the design of a classification algorithm is 
to select a set of distinguishing features to represent the data 
such that the input vector to the classifier is x = [f1  f2 ... fn]T.  
While the feature set should include as much information as 
possible, it should also be of reasonably low dimension 
because the amount of training data required grows with the 
dimension of the data.  For mesoplodon clicks, the times 
between consecutive zero crossings were selected as the 
features.  These features were chosen because a zero crossing 
detector is easy to implement and the periods between 
crossings capture the FM structure of the signal.  Additionally, 
as is evident in figure 6, the measured periods of the first 
several zero crossings tend to cluster fairly tightly.  In contrast, 



the times between consecutive zero crossings for ambient  
noise data do not tend to cluster. 

SVMs that discriminate between mesoplodon clicks set in 
ambient noise and ambient noise alone were developed using 
the periods of the first two, three, and four zero crossings as 
features.  Each SVM was trained using 116 Blainsville's 
beaked whale clicks and 116 samples of ambient noise (fig. 7).  
The classifiers were then tested using 785 mesoplodon clicks 
taken from 2 different sites, located more than 15 Nmi apart, 
and 800 samples of ambient noise only take from one site.  
Note that the test data also included the training data.  The 
classification performance versus ambient noise was excellent.  
Using the periods of the first four zero crossings as features, 
Pcc=0.985 and Pnse=0.010. 

Next, SVMs were created for two other click-like signals 
that are commonly observed at AUTEC when mesoplodon 
clicks are present.  Figure 8 shows ten clicks presumed to be 
from a pan-tropical spotted dolphin (Stenella attenuata) and a 
portion of ten man-made tracking pings used by the AUTEC 
range. The times between the first several consecutive zero 
crossings were again used as features with ambient noise used 
as the reference class.  The SVMs for the stenella click were 
trained using 110 clicks and 110 ambient noise samples, and 
the SVMs for the tracking ping were trained using 120 pings 
and 120 ambient noise samples.   

 

 
Figure 5:  Twelve overlaid clicks from Mesoplodon densirostris. 

 

 
Figure 6: Times between consecutive zero crossing for 100 mesoplodon clicks. 

Classification performance for each signal class 
individually against noise alone was again very good.  The 
SVMs for stenella were tested using 1200 clicks and 1200 
ambient noise samples. When the first 2 crossings were used 
Pcc=0.934 and Pnse=0.052, and when the first 3 crossings were 
used Pcc=0.876 and Pnse=0.042.  The SVMs for the tracking 
pings were tested using 2000 pings with various amplitudes 
and Doppler shifts, and 2000 ambient noise samples.  A 
Pcc=0.990 and a Pnse=0.070 were achieved using the periods of 
the first six zero crossings as the features.  

The best SVM for each of the 3 classes individually were 
then combined to form a multi-class CS-SVM.  Test input 
vectors x were  assigned membership  to class j* according to 
j* =arg max(fj(x)) or to the noise-only class if max(fj(x)) < 0.  
The multi-class CS-SVM was tested using all the test data 
from each of the classes.  The results are listed in Table 3.  
The greatest confusion among the classes occurred between 
the stenella click class and the tracking ping class.  This is 
probably because the stenella class and the ping class are 
fairly close to each other in the chosen feature space (fig. 9).  
CS-SVM performance for mesoplodon clicks was excellent. 

 
Figure 7: Scatter plot showing the distribution of the times between the first 3 

zero crossing for 116 mesoplodon clicks and 116 ambient noise samples. 
 
 

 
Figure 8: (a) Ten overlaid clicks believed to be from Stenella attenuata, and  

(b) the beginning portion of ten overlaid tracking pings. 



 
 

 
Figure 9: Scatter plot showing the distribution of the times between the first 3 

zero crossing for 116 mesoplodon clicks , 116 ambient noise samples, 110 
stenella clicks  and 120 tracking pings.  The stenella  clicks and pings are 

fairly close together in this  feature space. 
 
 
TABLE 3: Performance of the CS-SVM for the 3 types of click waveforms 

Test Data Set Pcc Pmiss Pnse 

Mesoplodon       
(first 4 crossings) 0.9847 0.0013 0.0075 

Stenella             
(first 3 crossings) 0.0.8817 0.0125 0.0408 

Tracking Ping    
(first 6 crossings) 0.9495 0.0455 0.0250 

Noise-only            
(all 3 sets) 

                      
-- 0.0770 0.9230 

 
 

V.  CONCLUSION 
 

 This paper has presented a novel multi-class support 
vector machine classifier, the class-specific SVM. The new 
classifier consist of k binary SVMs where each SVM 
discriminates between one of k classes of interest and a 
common reference class.  Test inputs are assigned membership 
in either the class whose decision function is maximized or the 
reference class if all decision function are negative.  The CS-
SVM concept was first demonstrated using several 2-
dimensional synthetic examples. Then, a CS-SVM was created 
to classify click vocalizations from Blainville's beaked whale 
(Mesoplodon densirostris).  The resulting classifier was able 
to reliably differentiate between mesoplodon clicks, delphinid 
clicks (from Stenella attenuata) and man-made tracking pings.  
The  performance of the CS-SVM was excellent with over 
98% of the test mesoplodon clicks correctly classified.      
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